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Abstract: The mechanism of SnCU-mediated rearrangement of a-aroyl-y-butyrolactones into aryl tetralones 
was reinvestigated and was compared to the rearrangement of 2,5-diaryl-2,3-dihydrofiirans using the same 
conditions. We have shown that in fact lactone is converted into dihydrofuran which then is rearranged into a 
tetralone. 

4-aryltetralones are highly valuable synthons used as key intermediates for the synthesis of biologically active 

compounds such as Sertraline (Zoloft®) (1), ABT-431 (2-3) and many other active molecules (4-8). Two 

efficient syntheses of 4-aryltetralones such as 1, based on a SnCU-induced rearrangement of oxygenated 

heterocycles like 2,5-diary!-2,3-dihydrofiiran 2 (9) or a-aroyl-^butyrolactone 3 (10) have been reported in 

literature (Scheme 1). 

SCHEME 1. synthesis of 4-aryltetralones 

Results and discussion 

SnCU-induced rearrangement of the a-aroyl-^-butyrolactone 3 is an efficient method to obtain the 4-

aryltetralone 1 as the key step for the synthesis of the Bristol-Myers precursor of the well known anticancer 

agent podophyllotoxin,. After 24h, this reaction cleanly led to 1 in 91% yield According to the authors, the 
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rearrangement is a stepwise mechanism and proceeds as described in Scheme 2. In a first step initial opening 

of the lactone gives the benzylic carbocation 5 (step A); decarboxylation of 5 gives the carbocation 6 (step B) 

which undergoes intramolecular Friedel and Craft reaction leading to 1. Based on our expertise in the field of 

that type of rearrangement (11), we suspected that the proposed mechanism is different from the first one 

proposed. Thus we decided to reinvestigate this type of rearrangement and to compare the route with that 

starting from the 2,5 -diaryl-2,3-dihydrofiiran 2. 
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Formation of the two tetralones 7a and 7b already used as precursors of natural products (10,12) was thus 

studied (Scheme 3). The starting heterocyclic species could efficiently be obtained by Mn(OAc)3 mediated 

addition of dicarbonylated compounds (ß-ketoester for the 2,3-dihydrofurans 8a and 8b, 

monomethylmalonate for ^lactones 9a and 9b) to methyl cinnamate moieties in acetic acid at 70°C. 

Formation of 2,5-diaryl-2,3-dihydrofurans 8 gave roughly better yields than synthesis of the ^-lactones 9. In 

all cases reaction was totally regio- and diastereoselective leading to the single trans-8 and trans,trcms-9 

diastereomers. Subsequently, tetralone precursors 10 were prepared by α-aroylation of the sodium enolates of 

9 in THF. 
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a=Ar1=Ar2= 3,4-dimethoxyphenyl 

b=Ar1= 3,4-trim£thoxyphenyl; Ar2= 3,4-methylenedioxypheriyl 

a) 1) NaH, THF, r.t.; 2) aroyl chloride, r.t., 6h. b) SnCI4, CH2CI2, r.t. c) Mn(OAc)3, AcOH, 70°C. 

SCHEME 3. Preparation of the substrates 

As described, the SnCU-induced rearrangement of 8 or 10 in CH2CI2 at room temperature led to 4-

aryltetralones 7 in nearly 90% yield. However, when rearrangement of 10 was checked at regular intervals by 

TLC the total consumption of 10 and formation of intermediary product was detected after 2h; this 

intermediate was then slowly converted into 7. This new product was isolated and unambiguously 

characterized as being 8 In opposition to the commonly accepted mechanism, the rearrangement of the a-

aroyl-^-butyrolactones is a two step reaction beginning by conversion of the ^-lactone to a 2,3-dihydrofuran 

which consecutively rearranges into 4-aryltetralone. It means that the unique heterocyclic compounds leading 

to 4-aryltetralones by Lewis-acid rearrangement are the 2,5-diaryl-2,3-dihydrofurans. The crucial step of this 

mechanism is decarboxylation of acyclic benzylic carbocation resulting from the ^lactone ring opening. This 

carbocation is trapped by enol form of the yff-ketoester resulting from carbon dioxide loss (scheme 4) leading 

to the 2,5-diaryl-2,3-dihydrofiiran This transformation is a fast and quantitative process. A slower 

transformation takes then place involving the 2,3-dihydrofuran ring opening followed by intramolecular 

Friedel et Crafts cyclization. 
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SCHEME 4. Mechanism of the rearrangement leading to a tetralone 
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Conclusion 

In summary, we have demonstrated that in the SnCI4-induced rearrangement of ^-lactones route for the 

synthesis of 4-aryltetralones the true intermediates are 2,5-diaryl-2,3-dihydrofiirans which can be used 

directly as precursors. Furthermore this rearrangement can be used for the synthesis of 2,5-diaryl-2,3-

dihydrofurans provided that reaction time is controlled. 

Experimental part 

General procedure for the preparation of 2,3-dihydrofurans 8: a-aroyl-y-butyrolactones (0.04 Μ solution 
in CH2CI2) are stirred under nitrogen at room temperature. 10 equiv. of SnCU are added in one portion via a 
syringe and stirring is continued until total consumption of starting material (2h). The reaction mixture is then 
diluted with Et20 followed by careful addition of satured aqueous NaHCCh The aqueous layer are extracted 
with Et20. The combined organic layers are washed with satured aqueous NaHCCh and dried over MgS04. 
After evaporation of the solvent, the crude product is purified by flash chromatography (hexane/Et20) to give 
8a in 80% yield and 8b in 58% yield. 

8a: 'H-NMR (CDCb): 3.60 (s, 3H), 3.72 (s, 3H), 3.81 (s, 6H), 3.86 (s, 6H), 4.17 (d, 1H, J= 6.6), 5.61 (d, 1H, 
J= 6.6), 6.75-6.82 (m, 4H), 7.56 (dd, 1H, J= 1.3, 8.6), 7.62 (d, 1H, J= 1.6). 13C-NMR (CDCI3): 51.35, 52.68, 
56.11, 56.16, 58.39, 84.87, 100.60, 108.86, 110.33, 111.52, 113.10, 118.16, 121.53, 123.52, 132.65, 138.11, 
148.23, 149.55, 151.62, 164.95, 166.64, 173.45. 
8b: 'H-NMR (CDCI3): 3.61 (s, 3H), 3.75 (s, 3H), 3.78 (s, 3H), 3.80 (s, 6H), 4 16 (d, 1H, > 6 . 5 ) , 5.58 (d, 1H, 
J= 6.5), 5.95 (s, 2H), 6.52 (s, 2H), 6.88 (d, 1H, J= 7.8), 7.42 (d, 1H, >1 .3 ) , 7.50 (dd, 1H, J=1.3, 7.8). 13C-
NMR (CDCb): 51.44, 52.79, 56.30 (2CH3), 58.14, 60.96, 85.10, 100.81, 101.67, 102.43 (2CH), 107.90, 
110.02, 122.53, 124.99, 135.59, 138.20, 147.28, 150.12, 153.74 (2C), 164.78, 166.18, 173.30. 
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